RANKIN–COHEN TYPE DIFFERENTIAL OPERATORS FOR SIEGEL MODULAR FORMS
نویسندگان
چکیده
منابع مشابه
Operators on Hilbert - Siegel Modular Forms
We define Hilbert-Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel d...
متن کاملHecke Operators on Hilbert–siegel Modular Forms
We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...
متن کاملExplicit Matrices for Hecke Operators on Siegel Modular Forms
We present an explicit set of matrices giving the action of the Hecke operators T (p), Tj(p ) on Siegel modular forms. Introduction It is well-known that the space of elliptic modular forms of weight k has a basis of simultaneous eigenforms for the Hecke operators, and the Fourier coefficients of an eigenform (and hence the eigenform) are completely determined by its eigenvalues and first Fouri...
متن کاملModular forms and differential operators
A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...
متن کاملSiegel Modular Forms
These are the lecture notes of the lectures on Siegel modular forms at the Nordfjordeid Summer School on Modular Forms and their Applications. We give a survey of Siegel modular forms and explain the joint work with Carel Faber on vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture of Harder on congruences between Siegel modular forms of genus 1 and 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 1998
ISSN: 0129-167X,1793-6519
DOI: 10.1142/s0129167x98000191